Expression patterns and evolution of urocortin and corticotropin-releasing hormone genes in a cichlid fish

Brian P. Grone | Julie M. Butler | Christy R. Wayne | Karen P. Maruska

Abstract

The corticotropin-releasing hormone and urocortin family of peptides consists of five members in many vertebrates: CRH (crhb in teleosts), CRH2, UCN/UTS1, UCN2, and UCN3. These genes differ in expression pattern, as well as receptor affinity, allowing them to serve a wide range of functions in a variety of species. To better understand the roles of these genes in a single species, we examined their expression patterns in the cichlid fish Astatotilapia burtoni. In situ hybridization to map mRNA expression patterns of crhb, uts1, ucn2, and ucn3 in the brain revealed conserved and distinct spatial features of expression. crhb- and uts1-expressing cells were the most broadly distributed, with several areas of co-regionalization. ucn3 was less abundant but was found in discrete regions throughout the extent of the brain, with high expression in the cerebellum, while ucn2 was restricted to only a few areas. RT-PCR showed that while crhb, uts1, and ucn3 are found in several body tissues and...
1 | INTRODUCTION

A corticotropin-releasing peptide was initially purified from the hypothalamus and identified based on its ability to stimulate release of corticotropin from pituitary cells (Vale et al., 1981). In addition to the releasing-hormone function, this highly conserved 41-amino-acid neuropeptide also acts as a neuromodulator in various brain regions. Thus, the name “corticotropin-releasing factor” (CRF) is used interchangeably with “corticotropin-releasing hormone” (CRH), although neither name captures the full range of actions that this neuropeptide shows (Deussing & Chen, 2018). In the past four decades, an entire family of related peptides, with corresponding receptors and interacting proteins, have been identified in vertebrates as well as invertebrate species (Cardoso et al., 2014; Endsin et al., 2017). To understand how the diverse expression patterns of multiple CRH paralogs are related to their functions, a comparative approach is necessary. By understanding the conserved and novel features of different CRH-related genes in different species, we can provide insights on how CRH genes evolved to serve adaptive roles in diverse environments and species.

Recent studies show that the CRH system in vertebrates includes a greater diversity of peptides than previously appreciated (Cardoso et al., 2016; Endsin et al., 2017). Two rounds of whole-genome duplication in vertebrates led to the presence of two CRH genes. CRH2 was originally identified in the elephant shark (Nock et al., 2011) and subsequently shown to exist in jawed vertebrates generally (Grone & Maruska, 2015b). Furthermore, the teleost-specific whole-genome duplication generated two CRH1 paralogs—crha and crhb (Grone & Maruska, 2015a). Teleost fishes constitute an extremely large and diverse group of vertebrates, and we have already identified major differences in crha expression in different teleosts, that is, *Astatotilapia burtoni* and zebrafish. The fact that CRH gene duplications occurred is not unexpected, given known vertebrate whole-genome duplications. It is somewhat surprising, however, that CRH2 and crha remained unidentified for more than three decades after the initial sequencing of CRH. Given the widespread functional importance of CRH peptides in the stress response, anxiety behavior, and other physiological processes including appetite suppression (Spina et al., 1996), cardiovascular regulation (Nazarloo et al., 2006; Vaughan et al., 1995), regulation of the inflammatory response (Jain et al., 1991), and reproduction (Florio et al., 2004; Rivier & Vale, 1984), further studies in diverse species may help reveal the selective pressures leading to such diversity over evolutionary time.

Similarly, the two rounds of vertebrate whole-genome duplication led to multiple urocortin genes in vertebrate lineages. It was proposed that a vertebrate progenitor had two peptide genes that led to the distinct lineages containing, in one group, CRH1, CRH2, and urocortin (UCN1), and in the other, urocortin 2 (UCN2) and urocortin 3 (UCN3). Two receptors have been identified for the CRF family of peptides: CRFR1 and CRFR2 (Bale & Vale, 2004). These receptors share about 70% sequence homology and likely originated from a single ancestral receptor via whole-genome duplication (Lovejoy et al., 2014). CRF is a highly potent activator of CRFR1, while UCN1 binds with similar affinity to CRHR1 and CRHR2 (Vaughan et al., 1995). UCN2 and UCN3 are potent activators of CRFR2 (Hsu & Hsueh, 2001; Reyes et al., 2001). Urotensin (UTS1) was initially identified in fishes as a potent hypotensive and corticotropin-releasing peptide (Lederis et al., 1982). UCN1 was identified in mammals (Vaughan et al., 1995) as the mammalian homolog of UTS1 and has been studied in a variety of mammalian species, while the distribution and function of UTS1 were studied in some fishes including zebrafish (Brautigam et al., 2010) and carp (Huling et al., 2007). UCN2 and UCN3 were also examined in a few fishes, including zebrafish (Brautigam et al., 2010) and medaka (Miyayama et al., 2017). CRF, UCN1, and UCN3 expression in several tissues has also been reported in the amphibian Xenopus laevis (Boorse et al., 2005; Stenzel-Poore et al., 1992). Similarly, CRH1, CRH2, and urocortin expression was described in some birds, including chicken (Bu et al., 2019; Grommen et al., 2017; Vandenborne et al., 2005). However, a detailed description of expression patterns for all the fish urocortin genes within neural and peripheral tissues of a single species, which would be important for understanding their diverse functions, is not yet available.

Astatotilapia burtoni is a haplochromine cichlid fish from Lake Tanganyika, whose behavior and physiology are well-studied (Maruska & Fernald, 2018). A. burtoni males use aggressive behavioral displays in their efforts to control territories and exhibit pronounced and reversible changes in behavior, gene expression, and reproductive physiology as a
consequence of territorial dominance (Fox et al., 1997; Maruska & Fernald, 2010). Genes encoding CRH-family peptides and receptors are among those regulated by social status opportunities in A. burtoni (Carpenter et al., 2014). A previous study of A. burtoni tissues using RT-PCR revealed.crhb mRNA expression in several neural and peripheral tissues (C. C. Chen & Fernald, 2008). Using in situ hybridization, we found.crhb in A. burtoni hypothalamus and retina, while.crha was only in the retina (Gröne & Maruska, 2015a). However, detailed neuroanatomical studies of A. burtoni.crhb expression throughout the brain are not yet reported. Similarly, the expression patterns and function of urocortins are not characterized in A. burtoni. In fact, UCN genes have been studied in only a few of the more than 30,000 known fish species. This lack of information on urocortin expression patterns in fishes, the largest group of vertebrates, must be overcome to understand their evolutionary relationships and functions in vertebrates generally.

The goal of this study was to identify the evolutionary relationships and expression patterns of all CRH-family genes within a single teleost fish species. Here, we use in situ hybridization to identify the distribution of.crhb, uts1, ucn2, and ucn3 in the brain of A. burtoni, and RT-PCR to reveal expression patterns of these genes and.crha in neural and peripheral tissues. We also provide phylogenetic descriptions of the CRH family. Our results show that.crhb, uts1, and ucn3 are found in several body tissues and widespread throughout the brain, while.crha and ucn2 show more restricted expression patterns. Phylogenetic analysis of CRH-family peptides in A. burtoni confirmed that.crha and.crhb form a clade with.uts1, while ucn2 and ucn3 are in a separate group. Broad phylogenetic analysis of UCNs among vertebrates demonstrated that UCN/UTS1, UCN2, and UCN3 each formed distinct clades, with UCN2 and UCN3 more closely related to each other than to UCN/UTS1. These results provide insights into the molecular evolution and diverse functions of the CRH gene family within a single species and more broadly across vertebrates.

2 | MATERIALS AND METHODS

2.1 | Sequence analysis

Throughout this article, we use standard gene nomenclature. For fishes, gene symbols are italicized and protein symbols are capitalized. For other vertebrates, human conventions are used: gene symbols in all capitals and italicized and protein symbols in all capitals.

To determine the phylogenetic relationships among fish urocortin gene family members, sequences for urocortin genes were identified in Genbank and Ensembl for Atlantic herring (Clupea harengus), bearded dragon (Pogona vitticeps), betta (Betta splendens), budgerigar (Melopsittacus undulatus), Burton’s mouthbrooder (Astatotilapia burtoni), chicken (Gallus gallus), coelacanth (Latimeria chalumnae), elephant shark (Callorhinichus mili), golden eagle (Aquila chrysaetos), human (Homo sapiens), medaka (Oryzias latipes), mouse (Mus musculus), pig (Sus scrofa), platypus (Ornithorhynchus anatinus), spotted gar (Lepisosteus osulatus), Tasmanian devil (Sarcophilus harrisii), and western clawed frog (Xenopus tropicalis). These species were chosen for their high-quality genomic databases in order to represent broad vertebrate coverage while limiting the potential for errors.

In Table 1, Ensembl identification numbers or GenBank accession numbers are listed.

MrBayes 3.2.7a (Ronquist et al., 2012) was used to infer phylogenetic relationships, and was accessed via the CIPRES web portal (Miller et al., 2010). In MrBayes, default settings were used except for the following specified parameters: rates(among-site variation) = gamma, aamodelpr(2amino acid rate matrix) = mixed; nruns(number of runs) = 2; ngen(number of generations) = 1,000,000; samplefreq = 500; nchain(number of chains) = 8; temp(chain heating temperature) = 0.1; burninfrac(fraction of initial generations discarded) = 0.25. Diagnostics of the MCMC sampling were carried out using Tracer v1.7.1 (Rambaut et al., 2018). The effective sample size (ESS) for each parameter was >900 for each run, allowing adequate sampling of the Markov chain. The tree generated using MrBayes was visualized using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

2.2 | Animals and tissue collection

Laboratory-bred African cichlid fish Astatotilapia burtoni (Günther 1894) were maintained in mixed-sex groups in flow-through 30L aquaria under conditions similar to their native Lake Tanganyika (pH 8.0, 28–30°C, 300–500 µm−1, 12L:12D light cycle, constant aeration). Fish were fed cichlid flakes daily (Aquadine, Healdsburg, CA) and supplemented with brine shrimp several times a week. All experiments were performed in accordance with the recommendations and guidelines provided by the National Institutes of Health Guide for the Care and Use of Laboratory Animals, 2011. The protocol was approved by the Institutional Animal Care and Use Committee (IACUC protocol #18-101) at Louisiana State University, Baton Rouge, LA.

Fish were quickly netted from aquaria and measured for standard length (SL) and body mass (BM), immobilized in ice-cold water, and sacrificed by rapid cervical transection. Gonads were removed and weighed to calculate gonadosomatic index [GSI = (gonad mass / BM) × 100]. For RT-PCR, brains were removed from the cranium, macrodissected, and frozen at −80°C until RNA isolation. For in situ hybridization, brains were exposed and heads were fixed in 4% paraformaldehyde (PFA) made in 1x phosphate-buffered saline (PBS) at 4°C overnight, rinsed in 1x PBS, and cryoprotected in 30% sucrose prepared in 1x PBS for 1–2 days at 4°C. Brains were then dissected from the head and mounted in OCT media, sectioned in the transverse plane at 20 µm with a cryostat, and collected onto two to three alternate sets of charged slides (VWR Superfrost plus). Slides were dried flat at room temperature for 2 days and stored at −80°C until staining.

2.3 | Expression of crh-family transcripts in nervous and peripheral tissues

To determine which central and peripheral tissues express different crh-family transcripts, we used macrodissections, RT-PCR, and gel
TABLE 1 Sources for UCN/UTS1, UCN2, and UCN3 sequences used for analyses

<table>
<thead>
<tr>
<th>Common name</th>
<th>Species</th>
<th>UCN/UTS1</th>
<th>UCN2</th>
<th>UCN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Herring</td>
<td>Clupea harengus</td>
<td>XP_012674743.1</td>
<td>XP_012696518.1</td>
<td>XP_012679926.1</td>
</tr>
<tr>
<td>Bearded Dragon</td>
<td>Pogona vitticeps</td>
<td>XP_020663969.1</td>
<td>XP_020633946.1</td>
<td>XP_020663969.1</td>
</tr>
<tr>
<td>Budgerigar</td>
<td>Melopsittacus undulatus</td>
<td>ENSMUNP0000013993</td>
<td>XP_030901895.1</td>
<td>ENSMUNP0000002797</td>
</tr>
<tr>
<td>Burton’s mouthbrooder</td>
<td>Astatotilapia burtoni</td>
<td>XP_005949439.1</td>
<td>ENSHBUP0000009556</td>
<td>ENSHBUP0000007453</td>
</tr>
<tr>
<td>Crocodile</td>
<td>Crocodileus porosus</td>
<td>XP_019393758.1</td>
<td>ENSCPRT0000503637.1</td>
<td>XP_019399569.1</td>
</tr>
<tr>
<td>Chicken</td>
<td>Gallus gallus</td>
<td>AGC65587.1</td>
<td>XP_015140488.2</td>
<td>APUS2336.1</td>
</tr>
<tr>
<td>Coelacanth</td>
<td>Latimeria chalumnae</td>
<td>JH126690.1:1523227–1522793</td>
<td>XP_005997394</td>
<td></td>
</tr>
<tr>
<td>Elephant Shark</td>
<td>Callorhinichus mili</td>
<td>XP_007902667.1</td>
<td>XP_007889030.1</td>
<td>XP_007888748</td>
</tr>
<tr>
<td>Golden Eagle</td>
<td>Aquila chrysaetos</td>
<td>XP_02983028.1</td>
<td>XP_029852200.1</td>
<td>XP_029871265.1</td>
</tr>
<tr>
<td>Human</td>
<td>Homo sapiens</td>
<td>NP_003344.1</td>
<td>NP_149976.1</td>
<td>NP_444277.2</td>
</tr>
<tr>
<td>Medaka</td>
<td>Oryzias latipes</td>
<td>NP_001295911.1</td>
<td>NP_001121991.1</td>
<td>NP_001121992.1</td>
</tr>
<tr>
<td>Mouse</td>
<td>Mus musculus</td>
<td>NP_067265</td>
<td>NP_659543</td>
<td>NP_115240</td>
</tr>
<tr>
<td>Pig</td>
<td>Sus scrofa</td>
<td>ENSSSCP0000032698</td>
<td>ENSSSCP0000045074</td>
<td>ENSSSCP0000020262</td>
</tr>
<tr>
<td>Platypus</td>
<td>Ornithorhynchus anatinus</td>
<td>XP_028928378.1</td>
<td>Ultra32 775736</td>
<td>XP_007655165.1</td>
</tr>
<tr>
<td>Spotted Gar</td>
<td>Lepisosteus oculatus</td>
<td>LGI:17173244:17177361:1</td>
<td>LG5_51350408</td>
<td>XP_015207759.1</td>
</tr>
<tr>
<td>Tasmanian Devil</td>
<td>Sarcophilus harrisii</td>
<td>XP_003767139.1</td>
<td>XP_023353749.1</td>
<td>XP_003772475.1</td>
</tr>
</tbody>
</table>

Note: Multiple sequence alignments were carried out on full-length predicted prepropeptide amino acid sequences using MAFFT v7.017 (Kato & Standley, 2013) in Geneious software version 5.1.7 (Kearse et al., 2012), with the following settings: Algorithm = E-INS-i; scoring matrix = BLOSUM62; gap-open penalty = 1.53.

electrophoresis. For brain regions, we removed brains from an adult dominant male. Brains were carefully dissected from the head. The pituitary and olfactory bulbs were removed and collected. Next, the telencephalon was separated just rostral to the optic nerves using a surgical blade to carefully ensure that the preoptic area remained with the hypothalamus. The spinal cord was severed just proximal to the medulla, and the corpus cerebellum was separated at the most ventral portion where it reaches the hindbrain. Finally, the hypothalamus was separated just below the midbrain, and the hindbrain portion was separated just caudal to the tectum. Thalamic nuclei are included in the midbrain portion, but it is possible that the hypothalamus portion also includes some thalamic nuclei. Eye tissue contained whole eyes with lens removed, and the urophysis was collected from the caudal end of the spinal cord near the tail. Skin, heart, liver, kidney, spleen, ovary (from a female), and testis were also collected to examine peripheral tissue expression. All samples were immediately frozen and stored at −80°C until RNA isolation.

Macrodissected brain and peripheral tissues were homogenized, RNA was isolated using RNeasy Plus Micro or Mini kits (Qiagen; Germantown, MD) following manufacturer’s protocols, and RNA was reverse transcribed to cDNA using qScript (Quantabio). cDNA; Platinum PCR SuperMix (ThermoFisher), nuclease-free water, and gene-specific primers (Table 2) were combined for PCR (95°C for 1 min; 35–40 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 1 min; 72°C for 1 min). We tested multiple primer sets for each gene, which showed similar tissue distributions. Only representative gels from the best primer sets are shown. About 5 μl of PCR product and 1 μl of loading dye were loaded into each well and run on a 2% agarose gel with GelRed at 65 V for 45–60 min. The products were visualized on a Biorad ChemiDoc Imaging system and verified to be the appropriate size in relation to the ladder (100 bp TrackIT). In addition, all samples were run with β-actin as a positive control. Negative controls (no RT enzyme in RT-PCR and no cDNA template in PCR) showed no bands in any reactions. PCR products (whole brain cDNA with gene-specific primers) were sequenced (Eurofin Genomics; Louisville, KY) for verification of primer specificity and amplification of each correct target gene.

2.4 | Chromogenic in situ hybridization to localize crh-family transcripts in the brain

We performed ISH on a total of eight males (SL = 50 ± 2.3 mm, BM = 2.88 ± 0.55 g) and seven females (SL = 39 ± 1.6 mm, BM = 3.96 ± 1.62 g) of mixed reproductive states. A total of five to seven animals were stained and examined for each gene (crhb, uts1, ucn2, and ucn3). ISH was done as previously described (Butler & Maruska, 2016; Grone & Maruska, 2015a; Porter et al., 2017). Digoxigenin (DIG)-labeled riboprobes were made from whole brain cDNA with gene-specific primers and purified (Table 2). Sense control probes for each gene were generated in the same manner but had the T3 RNA polymerase promoter sequence (aattaaccctcactaaaggg) added to the forward (sense) primer. Slides of cryosectioned brains were brought to room temperature and tissue was surrounded with a hydrophobic barrier (Immedge pen, Vector Laboratories). Slides were treated with
the following solutions: 1x PBS (3 × 5 min), 4% PFA (20 min), 1x PBS (2 × 5 min), proteinase K (10 min), 1x PBS (10 min), 4% PFA (15 min), 1x PBS (2 × 5 min), milliQ water (3 min), 0.1 M triethanolamine–HCl pH 8.0 with acetic anhydride (10 min), 1x PBS (5 min). Tissue was then prehybridized for 3 h in a sealed chamber at 60–65°C, followed by incubation with probe solution. Slides with DIG-labeled probe were covered with hybrislips and hybridized overnight (~18 h) in a 60–65°C oven. After hybridization, stringency washes were performed at 60°C as follows: 2x saline sodium citrate (SSC): 50% formamide (2 × 30 min), 1:1 mixture of 2x SSC: maleate buffer with tween (MABT; 2 × 15 min), and MABT (2 × 10 min). Slides were transferred to room temperature and washed with MABT (2 × 10 min), followed by blocking of nonspecific binding with MABT containing 2% bovine serum albumin (BSA) for 3 hrs at room temperature. After blocking, slides were incubated with anti-DIG AP antibody (Roche; diluted 1:5000 in blocking solution) overnight at 4°C in a sealed humidified chamber. Slides were then washed in MABT (3 × 30 min), treated with alkaline phosphatase (AP) buffer (2 × 5 min), and developed in NBT/BCIP solution at 37°C for 5 h. Following development, slides were treated with 1x PBS (3 × 5 min), 4% PFA (10 min), and 1x PBS (3 × 5 min). Slides were coverslipped with aqueous mounting media (Aquamount, Lerner Laboratories), dried flat overnight, and then edges sealed with clear nail polish.

2.4.1 Imaging and analysis

To map the distribution of crhb, uts1, ucn2, and ucn3-expressing cells, slides of stained tissue were visualized on a Nikon Eclipse Ni microscope controlled by Nikon Elements software (RRID:SCR_014329), and photographs were taken with a color digital camera (Nikon DS-Fi2). Localization results are based on consensus staining from all animals (mixed sex and reproductive states). Images were adjusted for contrast, brightness, and levels as needed in Photoshop (Adobe Systems, San Jose, CA; RRID: SCR_014199). Distracting artifacts were also removed with the Photoshop clone tool. To facilitate identification of neuroanatomical structures and brain nuclei, we used a cresyl-violet stained A. burtoni reference brain and annotated atlas, as well as other brain atlases from this and other teleost species (Burmeister, Munshi, & Fernald, 2009; Fernald & Shelton, 1985; K. P. Maruska, Butler, Field, & Porter, 2017; Munoz-Cueto, Sarasquete, Zohar, & Kah, 2001; M.F. Wullimann, Rupp, & Reichert, 1996).

3 | RESULTS

3.1 Phylogenetic analyses

We identified five CRH/UCN gene family members in A. burtoni and obtained their sequences from genomic and transcriptomic databases. Tunicate (Ciona intestinalis) diuretic hormone-like peptide (DHLP) was chosen as an outgroup because tunicates are closely related to vertebrates but appear to possess only one CRH-family peptide, similar to an unduplicated CRH-like peptide in a vertebrate ancestor (Lovejoy & Barsyte-Lovejoy, 2010). A phylogenetic analysis (Figure 1) confirmed the expected relationship of A. burtoni CRH-family peptides: crha and crhb are closely related and form a clade with uts1, while ucn2 and ucn3 are in a separate group.

To better understand the relationships among vertebrate urocortin family members, we created a phylogenetic tree including UCN/UTS1, UCN2, and UCN3 sequences from a range of fishes, birds, reptiles, and mammals (Figure 2). CRH1/CRH2 and crha/crhb sequences were not included in this tree and have been compared elsewhere (Cardoso et al., 2016; Grone & Maruska, 2015a, 2015b). This tree was based on Bayesian analysis of the full-length predicted prepropeptide sequences and included all the known urocortin genes for each species in the tree. In this tree, UCN/UTS1, UCN2, and UCN3 sequences each formed distinct clades. UCN2 and UCN3 sequences also formed a clade, more closely related to each other than to UCN/UTS1.

Table 2

<table>
<thead>
<tr>
<th>Gene</th>
<th>RT-PCR primers</th>
<th>ISH primers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR primers</td>
<td>crha</td>
<td>TACATGGAATACCTTCGGAAA</td>
</tr>
<tr>
<td></td>
<td>crhb</td>
<td>GACTGCAAGCTTTTCCCATC</td>
</tr>
<tr>
<td></td>
<td>uts1</td>
<td>GCCAAATCAGGTTTATATAC</td>
</tr>
<tr>
<td></td>
<td>ucn2</td>
<td>GCTGGCTGCAGCTGGTTGTC</td>
</tr>
<tr>
<td></td>
<td>ucn3</td>
<td>GCTGGCTGCAGCTGGTTGTC</td>
</tr>
</tbody>
</table>

A phylogenetic analysis (Figure 1) confirmed the expected relationship of A. burtoni CRH-family peptides: crha and crhb are closely related and form a clade with uts1, while ucn2 and ucn3 are in a separate group.

To better understand the relationships among vertebrate urocortin family members, we created a phylogenetic tree including UCN/UTS1, UCN2, and UCN3 sequences from a range of fishes, birds, reptiles, and mammals (Figure 2). CRH1/CRH2 and crha/crhb sequences were not included in this tree and have been compared elsewhere (Cardoso et al., 2016; Grone & Maruska, 2015a, 2015b). This tree was based on Bayesian analysis of the full-length predicted prepropeptide sequences and included all the known urocortin genes for each species in the tree. In this tree, UCN/UTS1, UCN2, and UCN3 sequences each formed distinct clades. UCN2 and UCN3 sequences also formed a clade, more closely related to each other than to UCN/UTS1.

Phylogenetic analyses

We identified five CRH/UCN gene family members in A. burtoni and obtained their sequences from genomic and transcriptomic databases. Tunicate (Ciona intestinalis) diuretic hormone-like peptide (DHLP) was chosen as an outgroup because tunicates are closely related to vertebrates but appear to possess only one CRH-family peptide, similar to an unduplicated CRH-like peptide in a vertebrate ancestor (Lovejoy & Barsyte-Lovejoy, 2010). A phylogenetic analysis (Figure 1) confirmed the expected relationship of A. burtoni CRH-family peptides: crha and crhb are closely related and form a clade with uts1, while ucn2 and ucn3 are in a separate group.

To better understand the relationships among vertebrate urocortin family members, we created a phylogenetic tree including UCN/UTS1, UCN2, and UCN3 sequences from a range of fishes, birds, reptiles, and mammals (Figure 2). CRH1/CRH2 and crha/crhb sequences were not included in this tree and have been compared elsewhere (Cardoso et al., 2016; Grone & Maruska, 2015a, 2015b). This tree was based on Bayesian analysis of the full-length predicted prepropeptide sequences and included all the known urocortin genes for each species in the tree. In this tree, UCN/UTS1, UCN2, and UCN3 sequences each formed distinct clades. UCN2 and UCN3 sequences also formed a clade, more closely related to each other than to UCN/UTS1.
Alignments of UCN, UCN2, and UCN3 peptide sequences revealed different degrees of sequence conservation (Figure 3). In the UCN3 clade, there were relatively few amino acid differences. The short branch lengths in the phylogenetic tree reflect high conservation of this peptide among many vertebrates. In contrast, UCN2 branch lengths were quite long, with notable sequence divergence between mammalian sequences and other species. Compared to the UCN/UTS1 also had a relatively high level of sequence divergence. Fish UCN2 sequences formed a clade, as did mammalian UCN2 sequences, but our analysis did not resolve all the UCN2 sequences in a single clade, likely because of the extent of sequence diversity. In contrast, all UCN3 sequences were resolved as a single clade.

In reptile species, we identified novel genes in this family and discovered potential gene losses in some groups (Figure 2). We found UCN, UCN2, and UCN3 genes in saltwater crocodile (Crocodylus porosus), where they had not been previously reported. In contrast, snakes and lizards, including the bearded dragon (Pogona vitticeps), have genes in the UCN and UCN3 clades but no identifiable UCN2 genes (Figure 3).

3.2 Expression of crh-family transcripts in nervous and peripheral tissues

We used RT-PCR and gel electrophoresis to localize transcripts of crha, crhb, uts1, ucn2, and ucn3 in peripheral (Figure 4) and macrodissected nervous tissues (Figure 5). There was no crha expression detected in any peripheral tissue, and crhb was expressed in skin, spleen, ovary, and testis. uts1 was found in ovary and testes, ucn2 was detected in heart, spleen, and ovary and testis, and ucn3 was found in skin, kidney, spleen, ovary and testis. In nervous tissues, crha was detected in the eye, and a weak band was present in the whole brain, but macrodissected brain regions showed undetectable expression (Figure 5). Strong bands showing amplification of crhb were detected in the eye, whole brain, telencephalon, hypothalamus, midbrain, and urohypophysis. Weaker expression for crhb was also seen in the olfactory bulbs, cerebellum, hindbrain, and spinal cord, while the pituitary showed a very faint band. Relatively high expression of uts1 was found in the eye, whole brain, telencephalon, midbrain/thalamus, and hypothalamus. Weaker uts1 bands were also evident in the cerebellum, hindbrain, spinal cord, and urohypophysis, and no expression detected in the olfactory bulbs and pituitary. For ucn2, strongest expression was present in the eye, whole brain, and spinal cord, moderate expression in the midbrain, hypothalamus, cerebellum, and urohypophysis, weak expression in the olfactory bulbs, telencephalon, and hindbrain, and undetectable expression in the pituitary. Strong bands for ucn3 were detected in the whole brain, eye, midbrain/thalamus, and cerebellum, and weaker expression was present in all other tested nervous tissues (Figure 5).

3.3 Localization of crhb, uts1, ucn2, and ucn3 in the brain

We used chromogenic in situ hybridization to map the distribution of crhb-, uts1-, ucn2-, and ucn3-expressing cells throughout the A. burtoni brain. Sense control probes for each gene showed no staining in the brain when applied to adjacent sections labeled with anti-sense DIG-labeled probes (Figure 6). Localization patterns for all four genes are summarized in Figure 7 and described in detail below.

3.4 Localization of crhb expression

3.4.1 Olfactory bulbs and telencephalon

Scattered crhb-expressing cells lie in the glomerular layer of the olfactory bulbs (Figures 7(a2) and 8(a)). In the telencephalon, a dense population of darkly stained crhb cells lie the medial and lateral parts of the ventral telencephalon (Vc, VI) (Figures 7(b2) and 8(b)). Staining is denser along the lateral edge of the VI and extends dorsally toward the central part of the dorsal telencephalon (Dc) more caudally. A few crhb-stained cells are scattered in the dorsal and ventral parts of the ventral telencephalon area (Vd, Vv) (Figure 7(b2)).
3.4.2 | Diencephalon

Cells expressing crhb are found throughout the preoptic area (POA) (Figures 7(c2–f2) and 8(c)). A group of small cells is found in the dorsal parvocellular preoptic nucleus, anterior part (nPPa) (Figure 7(c2–d2)) and scattered cells lie in the posterior part (nPPp) (Figure 7(e2–f2)). More caudally, larger crhb-positive cells are found in the magnocellular and parvocellular divisions of the magnocellular preoptic nucleus (nMMP, nPMP) (Figure 7(e2)). A few large, possibly gigantocellular cells, are located in the magnocellular preoptic nucleus, gigantocellular division (nGMP). A line of darkly stained crhb cells are located along the ventral edge of the POA in the area of the suprachiasmatic nucleus (SN) (Figure 8(c)).

Cells expressing crhb are also found throughout the lateral tuberal nucleus (NLT), particularly in the intermediate, medial, and ventral parts (NLTi, NLTm, NLTv) (Figures 7(f2–i2) and 8(d)). A small cluster of cells is located in the dorsal NLT part (NLTd) and dorsal part of the anterior tuberal nucleus (ATn) (Figure 7(g2)). A group of crhb-expressing cells also populate the area near corpus mammillare (CM) and posterior tuberal nucleus (NPT) (Figure 7(i2)). Scattered crhb-expressing cells are found in the nucleus corticalis (NC) and throughout other thalamic regions (Figure 7(f2–h2)). Cells containing
crhb populate the central and dorsal posterior thalamic nuclei (CP, DP) and occur in the area of the ventromedial thalamic nucleus (VMn) and the anterior glomerular nucleus (aGn) (Figures 7(f2–h2) and 8(e)). Several groups of crhb-expressing cells are found around the glomerular nucleus (Gn) in the lateral thalamic nucleus (LT), and the areas near dorsal preglomerular nucleus (PGd) and nucleus of the pretectoisthmic tract (nTPI) (Figure 7(i2–j2)).

3.4.3 Mesencephalon and rhombencephalon

Abundant crhb expression is found throughout the periventricular gray zone of tectum (PGZ) and multiple small groups of crhb-
FIGURE 5 Expression of crh-family transcripts in macrodissected brain and nervous tissues of adult *A. burtoni*. Representative tissue distribution of transcripts is shown by PCR and gel electrophoresis from reverse transcribed cDNA. PCR products from β-actin transcripts in the same samples are shown below. Inset shows a sagittal view of the *A. burtoni* brain to illustrate the approximate macrodissection cuts used for analysis. A no reverse transcriptase (no RT) negative control and DNA ladder (100 bp ladder) are also shown. Base pair (bp) numbers to the left are sizes of the indicated ladder bands while bp numbers in parentheses to the right of each gene represent the product size. CE, cerebellum; HB, hindbrain; HYP, hypothalamus; MB/Thal, midbrain and thalamus; OB, olfactory bulb; Pi, pituitary; SC, spinal cord; TEL, telencephalon; Uro, urohypophysis; WB, whole brain

<table>
<thead>
<tr>
<th>Gene</th>
<th>Product Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>crha</td>
<td>76</td>
</tr>
<tr>
<td>crhb</td>
<td>545</td>
</tr>
<tr>
<td>uts1</td>
<td>118</td>
</tr>
<tr>
<td>ucn2</td>
<td>345</td>
</tr>
<tr>
<td>ucn3</td>
<td>338</td>
</tr>
<tr>
<td>actin</td>
<td>205</td>
</tr>
</tbody>
</table>

FIGURE 6 Representative examples of chromogenic in situ hybridization staining in the brain of *Astatotilapia burtoni* to show probe specificity. Antisense (AS) and sense (S) control probes are shown for *crhb* (a, b), *uts1* (c, d), *ucn2* (e, f) and *ucn3* (g, h). Photographs of AS and S were taken on alternate transverse sections from the same brain run simultaneously in the same ISH experiment. Sense control probes did not show any positive staining for any gene transcripts. See list for abbreviations. Scale bars = 50 μm (a, b, e, f, g, h); 100 μm (c, d) [Color figure can be viewed at wileyonlinelibrary.com]
FIGURE 7 Summary of localization of *crhb*, *uts1*, *ucn2*, and *ucn3* throughout the brain of *A. burtoni*. Representative transverse sections are shown from rostral (a) to caudal (p). Left column in each row shows a transverse section stained with cresyl violet (left side) and a traced mirror image with nuclei and other neuroanatomical structures labeled (right side). Localization of cells (dots) expressing *crhb*, *uts1*, *ucn2* and *ucn3* are shown on traced images of the right side of each transverse section. See list for abbreviations [Color figure can be viewed at wileyonlinelibrary.com]
expressing cells are found in torus semicircularis (TS) (Figures 7(h2–l2) and 8(f1)). One group contains smaller cells in the dorsal part of TS, possibly in central nucleus of TS (TSc), and a group of larger cells is found in the ventral TS, near the periaqueductal gray (PAG) (Figures 7(i2–k2) and 8(f)). Another group of crhb-expressing cells are found along the border between the ventrolateral nucleus of TS (TSvl) and the paratoral tegmental nucleus (PTT) (Figure 7(k2)). Large crhb-expressing cells are found in the nucleus of medial longitudinal fasciculus (nMLF) and oculomotor nucleus (III) (Figures 7(l2–k2) and 8(f)).

A few large, darkly stained crhb cells are in the locus coeruleus nucleus (LC) and at the lateral border of the fourth ventricle (4v) in the central gray (CG) (Figures 7(l2–m2) and 8(g)). Scattered cells expressing crhb are in the medial and inferior reticular nuclei (Rm, Ri)
A few lightly stained crhb-expressing cells lie in the ventral Purkinje layer of corpus cerebellum (CCeP) (Figures 7(n2–o2) and 8(i)). Scattered crhb-stained cells are also found along the ventrolateral edge of the spinal cord (Figure 7(p2)).

3.5 | Localization of uts1 expression

3.5.1 | Olfactory bulbs and telencephalon

Compared to crhb expression, uts1 expression is much more widespread throughout the telencephalon, especially dorsal subdivisions (Figures 7(a3–e3) and 9(a–c)). No uts1-expressing cells were observed in the olfactory bulbs (Figure 7(a3)). Dense uts1 staining lies along the medial edge of the rostral telencephalon in the medial part of the dorsal telencephalon, subdivision 1 (Dm-1) (Figures 7(a3) and 9(a)). Cells expressing uts1 are also scattered throughout the dorsal part of lateral zone of the dorsal telencephalon (Dl-d) and along the lateral edge in the granular and ventral zones of lateral zone of the dorsal telencephalon (Dl-g, Dl-v) and of the dorsal part of the dorsal telencephalon (Dd) (Figures 7(b3–e3) and 9(a,b)). uts1-expressing cells are more abundant in the caudal Dd (Figure 7(d3–e3)). In the caudal telencephalon, uts1-expressing cells also populate the Dm-3 (Figures 7(c3–e3) and 9(c)). A few cells are located along the ventral edge of the Dl-v, subdivision 2 (Dl-v2), possibly in the nucleus taenia (NT) (Figure 7(c3)). Scattered cells are found the medial portion of posterior part of the dorsal telencephalon (Dp) (Figure 7(d3–e3)).
3.5.2 | Diencephalon

No uts1-expressing cells are found in the POA (Figure 7(c3-f3)). A population of uts1-expressing cells are found throughout the thalamic CP, more lateral to where crhb-expressing cells were located (Figures 7(g3-h3) and 9(d)). A few uts1 cells lie in the ventral part of NC (Figure 7(f3)). The TPP also contains a group of uts1-expressing cells (Figure 7(g3-h3)). uts1 expression is found throughout the pregglomerular complex, especially in the lateral pregglomerular nucleus (PGl), medial pregglomerular nucleus (PGm), and, more caudally, in the commissural pregglomerular nucleus (PGc) (Figures 7(f3-g3,i3) and 9(d,e)). Like crhb, a few large uts1-expressing cells are found along the midline in the nMLF and Illn (Figures 7(i3-j3) and 9(g)). Some scattered cells are found in the nucleus of the torus lateralis (TLa) and in NPT (Figure 7(i3)). Like crhb, a group of uts1-expressing cells is found dorsolateral to the Gn and in LT (Figures 7(i3-j3) and 9(e)).

3.5.3 | Mesencephalon and rhombencephalon

Like crhb, uts1 is expressed throughout the PGZ layer of the tectum (Figures 7(e3-i3) and 9(h)). Density of cells expressing uts1 in this region appears lower than crhb but becomes denser more caudally. Cells expressing uts1 are also found in the TSvl, especially along the edge of PTT, in the PTT, and in the NLV regions along the ventricle (Figures 7(i3-k3) and 9(f)). Some small uts1-expressing cells are also scattered in the area of the dorsal tegmental nucleus (DT). A few large, darkly stained uts1 cells are found in the caudal LC (Figure 7(i3)) and...
preeminentia nucleus (PE), and become denser more caudally. Similar to crh, a few large cells are found at the lateral borders of 4v in CG, scattered throughout the CG, and just ventral to CG (Figure 7(l3–n3)). Several large uts1-expressing cells are located in dorsal motor nucleus of trigeminal nerve (Vmd) (Figure 7(m3)) and facial nerve (cranial nerve VII; VIIa). Uts1-expressing cells are scattered throughout Ri and along the brain edge just ventral to Ri (Figures 7(n3–p3) and 9(i)). Some scattered cells may also extend into Raphe nuclei along the midline and anterior to the region of IP (Figure 7(l4)).

3.7 | Localization of ucn3 expression

3.7.1 | Olfactory bulbs and telencephalon

Ucn3-expressing cells lie in the olfactory bulbs and are most abundant in the internal cell layer (ICL) (Figures 7(a5) and 11(a)). Scattered ucn3-expressing cells are also found in Vv and Vd but more lateral than the crh-expressing cells in these areas (Figures 7(b5) and 11(b)). A few cells stained for ucn3 occur in the area between the supracommissural and postcommissural parts of the ventral telencephalon (Vs, Vp), and within the caudal Vp (Figure 7(d5–e5)).
3.7.2 | Diencephalon

Only small, parvocellular-like cells were stained for ucn3 in nuclei of the preoptic area (Figures 7(c5–e5) and 11(c)). Staining was present in the nPPa, but more ventral to that observed for crhb (Figure 7(c5)). In addition, ucn3-expressing cells were found in the nPMp, nMMp, and parvocellular preoptic nucleus, posterior part (nPPp) divisions of the POA (Figure 7(d5–e5)). A few scattered cells also lie in the rostral portion of NLTv (Figures 7(f5–g5) and 11(d)). A group of ucn3 cells are found in the Tpp in a similar position as uts1-expressing cells (Figures 7(g5–h5) and 11(e)), and some scattered cells lie in the region of NPC lateral to habenular nuclei.

FIGURE 10 Representative photomicrographs of ucn2-expressing cells in the brain of A. burtoni. Scattered cells are found in the diencephalic NLT (a), midbrain DT (b), and hindbrain IP (c). Photomicrographs were taken from 20 μm transverse sections. Scale bars = 50 μm (a); 100 μm (b, c). See list for abbreviations [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Representative photomicrographs of ucn3-expressing cells in the brain of A. burtoni. Cells lie in the inner cellular layer of the olfactory bulbs (a), and a few scattered cells are seen in Vd (b). ucn3-expressing cells are found throughout preoptic nuclei (c) and scattered in the NLT (d). Cells are also present in the Tpp (e) and DT (f). In the tectum, ucn3-expressing cells lie in the PGZ, primarily in the dorsal region (g). In the hindbrain, cells lie in IP (h), and the granular regions of the corpus and valvulae cerebelli show dense ucn3 staining (f,i). Photomicrographs were taken from 20 μm transverse sections. Scale bars = 100 μm (a, f, g, h, i); 50 μm (b, c, d, e). See list for abbreviations [Color figure can be viewed at wileyonlinelibrary.com]
3.7.3 | Mesencephalon and rhombencephalon

Similar to *crhb* and *uts1, ucn3* expression is found in the PGZ of the tectum (Figures 7(f5–k5) and 11(g)). Staining was denser than *uts1*, but not as dense as *crhb*, and was more abundant in the rostral and medial tectum. Cells were also more abundant in the dorsal PGZ throughout its extent compared to lateral and ventral regions (Figure 7(g5–k5)). A group of large *ucn3*-expressing cells are found in the area near PAG (Figure 7(i5)). Expression of *ucn3* in the IP is similar to that of *uts1* (Figures 7(k5) and 11(h)). Like *uts1*, a few *ucn3*-expressing cells are found along the ventriculo border in the region of DT (Figure 11(f)).Granular cell-like *ucn3* staining is found throughout the granular layers of corpus cerebellum (CCeG), valvula cerebellum (VCeG), and within the eminentia granularis (EG) (Figures 7(j5–o5) and 11(f,i)). This expression is supported by a strong band present in RT-PCR of the cerebellum (see Figure 5). A few large *ucn3*-expressing cells are found along the 4v border in CG, which extends caudally to the spinal cord (Figure 7(p5)), and throughout the dorsal secondary gustatory nucleus (SGn) (Figure 7(l5)). Some *ucn3*-expressing cells are scattered throughout the superior reticular nucleus (Rs) (Figure 7(l5–m5)).

4 | DISCUSSION

Here, we provide phylogenetic analysis, tissue expression, and brain localization patterns for the suite of CRH-family genes in a single teleost species. Our phylogenetic analysis of *A. burtoni* CRH-family peptides confirmed that *crha* and *crhb* are closely related and form a clade with *uts1*, while *ucn2* and *ucn3* are in a separate group. While *crhb*, *uts1*, and *ucn3* are found in several body tissues and are widespread throughout the brain, *crha* and *ucn2* show more restricted expression patterns. A broader phylogenetic analysis of UCNs also identified novel UCN2 homologs in reptiles, which have not been previously shown to possess UCN2. Our searches found no UCN2 in some reptiles, suggesting a potential loss in snakes and lizards. The absence of UCN2 genes in lizards is similar to the lack of known UCN2 in frogs (Boorse et al., 2005), suggesting reduced constraints on the evolution of these peptides in some lineages. Collectively, our results provide insights into the molecular evolution and diverse functions of the CRH gene family across vertebrates.

4.1 | Evolutionary origins

We cannot make sense of any part of the biology of CRH peptides, except in the light of evolution (Dobzhansky, 1973). CRH homologs are present in many invertebrates as well as in all vertebrates, indicating an ancient evolutionary origin for this family of peptides. CRH-like diuretic hormone (DH44) genes are found in insects, first described in the moth *Manduca sexta* (Kataoka et al., 1989) and subsequently in many other insect species (Cabero et al., 2002; Cardoso et al., 2014). Insect DH44 stimulates fluid secretion via cyclic AMP signaling. In *Drosophila melanogaster*, DH44 is expressed in neuroendocrine cells of the pars intercerebralis (Cabero et al., 2002). The homeostatic function of insect CRH homologs is functionally reminiscent of the fluid homeostasis functions of vertebrate CRH orthologs, suggesting a potentially conserved ancestral function. CRH homologs are also found in annelids, mollusks, and arthropods, with differing gene numbers suggesting independent duplications in some lineages (De Oliveira et al., 2019). The gastropod CRF/DH44-like egg-laying hormone (ELH) genes, initially isolated from *Aplysia californica*, inhibit feeding and stimulate ovulation (Chiu et al., 1979). In general, ancestral roles of the CRH family peptides, in invertebrates as well as vertebrates, are hypothesized to include regulation of feeding and diuresis (Lovejoy et al., 2014).

Prior to the identification of CRH2 as a second vertebrate CRH gene, two distinct models of vertebrate CRH-family evolution were proposed. Lovejoy and colleagues suggested that a single ancestral peptide gene in a vertebrate progenitor was duplicated during two rounds of whole-genome duplication, giving rise to two pairs of related peptides: CRH/UCN and UCN2/UCN3 (Lovejoy & de Lannoy, 2013). The finding of a single CRH-like peptide in tunicate species was consistent with this model (D’Aquila et al., 2016). An alternative model posits that separate CRH/UCn (UI)-like and Ucn2/3-like paralogous lineages arose prior to the evolution of agnathans. A “sub-genomic event” then led to a split between CRH and UTS lineages. After the jawed vertebrates diverged from agnathans, UCN2 and UCN3 diverged. This model is supported by the location of *CRH1, CRH2*, and *UCN1* genes in a proposed paralogon with opioid peptide and receptor genes, while UCN2 and UCN3 are located in a paralogon that also contains visual opsin and oxytocin/vasopressin receptor genes (Cardoso et al., 2016). However, the genes located in syntenic blocks with UCN2 are not closely homologous to genes in synteny with UCN3, and the paralogon analysis relies on comparisons of genes that are distant from each other in large chromosomal regions. Although three CRH family members are identified in the sea lamprey, *Petromyzon marinus* (Endsin et al., 2017), the implications of lamprey genes for understanding CRH family evolution are limited by uncertainties about the timing of vertebrate whole-genome duplications relative to agnathan evolution (Holland & Ocampo Daza, 2018) and by the extensive genomic evolution of modern lampreys compared to any ancestral agnathans, including potential duplications and gene loss.

Altogether, the balance of the currently available evidence appears consistent with a scenario in which an ancestral CRH-like gene was duplicated preceding two rounds of vertebrate whole-genome duplication. However, there are remaining uncertainties about the exact timing of the origins of the five vertebrate CRH paralogs. Even more importantly, it is not yet understood why these duplicated genes were retained, or how their functions evolved in different lineages.

4.2 | Comparative neuroanatomy of vertebrate CRH, UTS1, UCN2, and UCN3 and functional implications

Our ISH staining in *A. burtoni* revealed widespread distribution of *crhb* cells from the olfactory bulbs to the hindbrain. Previous reports also document broad expression of CRH genes in the brains of several
vertebrates, including mammals and some fishes. For many years, only the crhb genes were studied in teleosts, because crha had not yet been identified. In teleosts, the primary location of hypophysiotrophic crhb neurons is the preoptic area. These neurons have been studied with immunohistochemistry in several teleost species including chinook salmon, white sucker, and brown ghost knifefish (Matz & Hofeldt, 1999; Yulis et al., 1986; Zupanc et al., 1999). In tilapia, an African cichlid fish closely related to A. burtoni, many cell bodies were located in the ventral telencephalon, with dense CRH-immunoreactive terminals in the rostral dorsal telencephalon (Pepels et al., 2002). Other tilapia CRH neuron populations were located in the preoptic area, tuberal region, olfactory bulb, and optic tectum, similar to the crha expression pattern observed here in A. burtoni. A cluster of dorsally-projecting, ventrally located CRH-immunoreactive neurons was also observed in the sailfin molly, Poecilia latipinna (Batten et al., 1990). In another poeciliid fish, Gambusia affinis, CRH-ir was observed in ventral telencephalon in addition to POA and NLT cell populations (Coto-Montes et al., 1994). In gilthead bream, Sparus aurata, CRH-ir neurons were largely absent from the POA, but prominent in NLT (Mancera & Fernández-Llebrez, 1995). Populations of hypothalamic crhb neurons in A. burtoni hypothalamus likely share developmental homologies with other vertebrates, for example, the otaa-expressing neurons that give rise to neuropeptidergic cells in the supraopto-paraventricular region of zebrafish (Biechl et al., 2017). Overall, several teleost fish species are known to express crhb in a variety of regions in addition to the prominent preoptic area cell cluster. The tel- east localization patterns within nuclei homologous to those in tetrapods suggests some conservation of function in homeostatic processes including stress regulation, feeding, anxiety, and behaviors.

In A. burtoni, crhb, along with uts1 and ucn3, was expressed to some extent in several sensory processing regions such as the olfactory bulbs, thalamic nuclei, tectum, torus semicircularis, and secondary gustatory nucleus. Similarly, CRH-related peptides, and particularly CRH itself, are also found in central sensory processing regions of mammals (Imaki et al., 1991; Lim et al., 2006; Potter et al., 1992). This raises the possibility of conserved modulatory functions in olfaction, vision, and hearing abilities possibly related to stress, fear, and anxiety responses via connections with limbic circuitry. In Xenopus, for example, CRF neurons in the visual tectum help modulate food intake in the presence of certain stressors (Prater et al., 2018), and CRF plays a role in acoustic startle responses in mammals via circuitry that includes auditory pathways and the amygdala (Risbrough et al., 2003). While there is limited information on whether Crf plays a role in sensory processing in fishes, a study in zebrafish demonstrated that the brain Crf system is essential for regulating innate camouflage behavior in response to light versus dark conditions (Wagle et al., 2011). The widespread distribution of crhb in the vertebrate brain and its diverse roles in many behaviors and physiological functions suggests it plays important roles in modulating the circuitry linking sensory inputs to behavioral decisions.

Reports of crha expression are very limited thus far. In this study, our RT-PCR results supported our previous finding that crha is exclu-
sively expressed in A. burtoni eye, without detectable levels in other tissues. Expression of A. burtoni crha in the retina and its absence in the brain was initially demonstrated using in situ hybridization (Grone & Maruska, 2015a). Medaka crha (also referred to as tel-eocortin) expression was reported in all peripheral tissues that were tested, but at low levels compared to a control gene, eef1a (Hosono et al., 2015). The highest expression level was detected in the medaka eye. In grass carp, crha was detected in the brain, along with crhb, uts1, and ucn3, but more detailed analyses of expression patterns in the carp brain were not reported (Ye et al., 2019). Until additional spe-
cies are examined, it remains unclear how much diversity in crha expression and function may exist.

Cells expressing uts1 were widely distributed throughout the entire A. burtoni brain, often with co- regionalization in the same nuclei as other CRH-family genes. UCN1/UTS1 distribution has been studied in a range of vertebrate species, including several mammals as well as fishes. In mammals, UCN1 is expressed in several regions of the brain, including prominent expression in the centrally projecting pep-
tidergic Edinger–Westphal nucleus (EWcp) (Kozicz et al., 2011). The urocortin-expressing EW cells have diverse projections within the central nervous system, and likely functional roles in stress adaptation and food intake, as reviewed in the study by Kozicz et al. (2011). Zebrafish have an Edinger–Westphal nucleus (Mueller et al., 2004), located lateral to the nucleus of the medial longitudinal fasciculus (nMLF) but uts1 expression in this region has not been verified. In A. burtoni, we identified a population of large cells near the nMLF that strongly expressed uts1 mRNA. Given the prominence and location of this staining, it is possible that these uts1-expressing neurons are functionally homologous to the mammalian Ucn1-expressing EW cells.

Similar to the broad distribution of Ucn1 in tetrapod brains, we found many nuclei expressing uts1 throughout the A. burtoni brain. In human brain, UCN1 mRNA and protein were detected broadly, includ-
ing hypothalamus, pons, cerebral cortex, and cerebellum (Takahashi et al., 1998). Rat UCN1 expression was investigated via immunohisto-
chemistry (Kozicz et al., 1998; Morin et al., 1999), which revealed expression in hypothalamic, raphe, and tegmental nuclei, in addition to extensive labeling in the Edinger–Westphal nucleus. A study of voles using in situ hybridization revealed expression mainly in the Edinger–Westphal nucleus (Lim et al., 2006). In the green frog, Rana esculenta, cell bodies with UCN1-like immunoreactivity were detected in several nuclei of the telencephalon, diencephalon, mesencephalon, and rhombencephalon, with prominent staining in the Edinger–Westphal nucleus (Kozicz et al., 2002).

Among teleosts, uts1 expression was previously examined in medaka and zebrafish brains. Medaka uts1 expression is observed in tel-eencephalon, thalamus, and brainstem (Hosono et al., 2017). Zebrafish uts1 mRNA expression was observed in developing hypothalamus, as well as nuclei of the telencephalon, diencephalon, hindbrain, and spinal cord (Alderman & Bernier, 2007; Brautigam et al., 2010). Generally, uts1 distribution in A. burtoni is very similar to that seen in zebrafish, but some differences with medaka are evident. For example, we observed uts1 cell populations in several mesencephalic regions, including the tectum and torus semicircularis, and hindbrain regions, neither of which are described in medaka. It is difficult to ascertain possible functional conse-
quences of this uts1 expression until additional species are examined.
The functions of Ucn2 and Ucn3 peptides depend on their expression patterns, as well as their ability to selectively bind CRF Receptor 2 (Reyes et al., 2001). In mammals, Ucn2 mRNA is found in several brain regions including hypothalamus, supraoptic nucleus, and spinal trigeminal nucleus. In zebrafish, ucn3 mRNA was detected in developing embryos from 24 hours onwards, in hindbrain rhombomeres 2 and 4, the superior raphe nucleus, optic tectum, telencephalon, and the retina (Brautigam et al., 2010). In A. burtoni, ucn2 showed very restricted distribution in the brain, while ucn3 was relatively more widespread and abundant. This overall pattern is similar to that seen in the medaka brain (Hosono et al., 2017). Expression of ucn2 in medaka brain was restricted to VM in the thalamus and NIP and raphe nucleus in the brainstem, with weak expression also seen in ND1 of the hypothalamus (Hosono et al., 2017). In contrast, medaka ucn3 was detected in many regions of the brain including nuclei in the ventral telencephalon, preoptic area, thalamus, hypothalamus, optic tectum, and brainstem. Localization of ucn2 and ucn3 in the interpeduncular nucleus of A. burtoni supports the possibility, proposed for medaka, that these IP neurons function in experience-dependent modification of fear responses and regulation of social aggression in teleosts (Hosono et al., 2017). One unique feature of ucn3 is its abundant expression in the cerebellum of A. burtoni revealed by both RT-PCR and ISH. Cerebellum ucn3 expression is also seen in medaka (Hosono et al., 2017) and developing chick embryos (Grommen et al., 2017), but not in zebrafish or mammals (Brautigam et al., 2010; Lewis et al., 2001). It is possible that ucn3 in some vertebrates has taken on functions in cerebellar-mediated motor performance, but this requires further study. In the medaka spinal cord, ucn2 expression was observed in the ventral region, while ucn3 expression was found in the dorsomedial region. The authors speculated that ucn2 may be undergoing a loss of function in medaka. Relative to other peptides in the family, the fish ucn2 sequences are highly divergent and the expression is restricted to a few nuclei.

Another way to view the current situation would be to suppose that the medaka ucn2 has experienced some degree of sub-functionalization, which may allow ucn2 to continue to perform specific adaptive functions in the context of medaka ecology and physiology. However, the sequence divergence and the apparent loss of ucn2 in other fishes (such as zebrafish) and mammals does support the idea that evolutionary constraints on ucn2 have been weakened, relative to ucn3. This difference between ucn2 and ucn3 is comparable to the relationship between the highly conserved CRH1 gene and CRH2, which has diverged greatly in sequence, been lost multiple times in vertebrate evolution, and maintains a very restricted expression pattern in spotted gar (Grone & Maruska, 2015b). Nevertheless, the widespread central distribution of ucn3 in both fishes and mammals suggests involvement in diverse and conserved physiological functions that include homeostasis and stress regulation. In mammals, Ucn3 peptide also has anorexigenic effects and was proposed to have a conserved role in inhibition of feeding (P. Chen et al., 2012; Fekете et al., 2007). Similarly, intraperitoneal injection of UCN3 into Siberian sturgeons inhibits food intake and may interact with CCK to cause anorexigenic effects as part of a brain-gut axis (Tang et al., 2019). In A. burtoni and the few other fishes examined, ucn3 is also localized to regions implicated in food intake and metabolism such as POA and NLT (homolog of arcuate nucleus). Thus, ucn3 may play a role in feeding regulation, but its broad expression patterns in other brain regions also suggests additional functions yet to be revealed.

4.3 CRH/UCN expression and roles in peripheral tissues

CRH and Urocorin transcripts and peptides are identified in many tissues outside the brain across vertebrate taxa, highlighting the global importance of the CRH-family to physiological processes. In mammals, for example, several peripheral tissues express some combination of Crf, Ucn1, Ucn2, and Ucn3. Those tissues include ones that we examined in A. burtoni: skin, heart, liver, kidney, and spleen (Kageyama et al., 1999; Kimura et al., 2002; A. Slominski et al., 2000; Takahashi et al., 2004). There is substantial variety in tissue expression among different mammalian species. For example, mice differ from humans and even from rats in the complement of peptides expressed in the skin (A. T. Slominski et al., 2013).

This diversity of peripheral tissue expression patterns also seems to hold true for the limited nonmammalian taxa examined. We found that A. burtoni skin contains crhb and ucn3 mRNA, in contrast to the skin of another cyprinid fish, Schizothorax prenanti, which did not contain detectable levels of crhb mRNA (Wang et al., 2014). Ucn3 was, however, found in skin of Xenopus laevis (Boorse et al., 2005). Mammalian skin cells express a range of neuropeptides, hormones, and receptors, including CRH and Urocorin (A. T. Slominski et al., 2013). CRH peptides are expressed in the skin in response to inflammatory stressors and disease, and regulate skin cell proliferation, differentiation, immune functions, and secretory activity. If the proliferative and immune pathways are conserved across many teleosts, perhaps other CRH-family peptides serve similar functions in the skin in a range of fish species.

Our results show that A. burtoni heart does not express uts1 or ucn3 but does express ucn2. In zebrafish heart, mRNA encoding crha, crhb, uts1, and ucn3 were detected (with uts1 at the lowest levels), in addition to receptors and binding protein expression (Williams et al., 2017). Furthermore, hypoxia-reperfusion exposure increases crhb and ucn3 expression in the zebrafish heart, and rat/human CRH and mouse UCN3 peptides were protective against hypoxia-induced apoptosis in zebrafish (Williams et al., 2017). CRH and Urocorin peptides have similar protective functions in mammalian heart (Davidson et al., 2009). In Xenopus, the heart expresses ucn1 and ucn3, but a ucn2 ortholog was not identified in this species (Boorse et al., 2005). The conserved role of this family of peptides in mammals and zebrafish suggests that ucn2 might also serve some protective role in A. burtoni heart.

In A. burtoni spleen, we detected crhb, ucn2, and ucn3 expression. This expression is reminiscent of rodent spleen, where both Crf (Aird et al., 1993) and Ucn (Kageyama et al., 1999) are expressed, although at relatively low levels. In mammals, CRH and
UCN likely modulate the peripheral immune response via various cell types, including spleen lymphocytes (Baigent, 2001). To date, the effects of CRH-family peptides in spleen do not appear well studied in any teleost species. In A. burtoni kidney, we detected ucn2 and ucn3. Similarly, all three urocortin genes are found in mammalian kidneys, where they may regulate diuresis and improve renal function (Devetzis et al., 2013). In Xenopus, both urocortin genes identified in this species, ucn1 and ucn3, are also detected in kidney (Boorse et al., 2005). In common carp, abundant CRH was detected in head kidney (Huising et al., 2007). The teleost head kidney, homologous to the mammalian adrenal gland, contains interrenal catecholamine-producing and glucocorticoid-producing cells, which play important roles in immune function and stress adaptation. While we only examined kidney and not head kidney in A. burtoni, the expression of both ucn2 and ucn3 in this tissue suggests diverse functional roles but requires further study.

In A. burtoni ovaries and testes, we detected crhb, uts1, ucn2, and ucn3. Human ovaries express both CRH and UCN mRNA (Florio et al., 2004). Strong expression of Ucn1 mRNA was detected in rat testes, along with weaker expression of Ucn2 and Ucn3 (Lee et al., 2011). In mammals, CRH and urocortins have important roles in steroidogenesis and fertility (Florio et al., 2004; Murase et al., 2002). In cultured ovarian cells, CRH inhibits steroidogenesis (Calogero et al., 1996), as does Ucn3 (Yata et al., 2009). While the functions of urocortins in teleost gonads remain largely unknown, it is interesting to note that the multitude of these peptides are expressed in both males and females of A. burtoni, suggesting a function in reproductive competence could be conserved in vertebrates.

The teleost urohypophysis (caudal neurosecretory system) is located at the caudal end of the spinal cord and regulates homeostasis via neuroendocrine secretion (McCrohan et al., 2007). We found that A. burtoni urohypophysis expresses crhb, uts1, ucn2, and ucn3. Similarly in zebrafish, uts1, ucn2, and ucn3 all showed expression in the caudal spinal cord, where the urohypophysis is located (Parmentier et al., 2008; Parmentier et al., 2011). The rostral region of the spinal cord near the brain in A. burtoni also showed expression of crhb, uts1, ucn2, and ucn3, although crhb and uts1 expression was only weakly detectable by RT-PCR. In medaka, uts1, ucn2, and ucn3 were all found in the spinal cord, but in different spatial localization patterns suggesting different functions (Hosono et al., 2017). Expression of many CRH-family transcripts throughout the spinal cord of fishes, including the urohypophysis, suggest diverse functions including sensory processing, motor output, reproductive function, osmoregulation, ionic homeostasis, and vasopressor activity.

Because our examination of CRH-family genes in peripheral tissues used only end-point RT-PCR, results must be interpreted with caution until additional more sensitive analyses such as in situ hybridization and qPCR are performed. Further understanding of these peptides in A. burtoni peripheral tissues will also await more detailed cell-type localization and functional experiments, including receptor distributions and cellular signaling cascades that may differ among CRH-family peptides.

5 | CONCLUSIONS

Here, we provide an extensive description of central and peripheral expression of the urocortins and corticotropin-releasing hormone genes in one species of cichlid fish. Because of the importance of African cichlid species, and A. burtoni in particular, as a model for evolution (Brawand et al., 2014), behavior (Fernald & Hirata, 1977), and sensory neuroscience (Maruska & Fernald, 2018), this work will inform future comparative and functional studies. Goals include understanding how the diverse expression patterns have evolved, and how the activity of these peptides regulates adaptive behaviors and physiology. Many genes in A. burtoni are regulated during the extensive physiological changes associated with social status and reproductive physiology. Given the importance of CRH and urocortin genes for social interaction and gene expression in mammals, some of the cell populations we identified could play similar roles in fishes.

Identifying the expression patterns, as well as biochemical and physiological functions, of all the CRF family peptides in representatives of distinct vertebrate lineages will be necessary for understanding how this gene family evolved and how the different orthologs play complementary adaptive roles. Further, identifying the expression patterns of CRH receptors, as well as their affinity for CRH and Urocortin peptides, will be necessary to reveal how each of these peptides exerts their effects.

ACKNOWLEDGMENTS

The authors thank members of the Maruska lab for fish maintenance and experimental assistance. Funding was provided by the National Science Foundation (IOS-1456004 and IOS-1456558 to Karen P. Maruska). Julie M. Butler was supported by a Louisiana Board of Regents Fellowship and an NSF Graduate Research Fellowship (1247192).

CONFLICT OF INTEREST

The authors have no known or potential conflicts of interest.

AUTHORS CONTRIBUTION

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/cne.25113.

DATA AVAILABILITY STATEMENT

All of the data used are provided in the manuscript, tables, and figures.

How to cite this article: Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin-releasing hormone genes in a cichlid fish. J Comp Neurol. 2021;529:2596–2619. https://doi.org/10.1002/cne.25113